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Abstract 
 

Although a lot of effort already went into the 
development of 3D acquisition technology, and 
existing methods come of age, several challenges 
remain. We try to give a – probably incomplete – 
overview of these. Then, some of our recent work at 
ETH Zürich and the University of Leuven is discussed, 
where we try to tackle such outstanding issues.    

 
1. 3D scanning solved? 
 

The production of 3D models has been a popular 
research topic already for a long time now, and 
important progress has been made since the early days. 
Nonetheless, the community is well-aware of the fact 
that still much remains to be done. In this paper we list 
some of these challenges (in this section), and in 
subsequent sections we describe recent work at ETH 
Zürich and K.U.Leuven which attempts to tackle them, 
at least in part. 

There is a wide variety of techniques for creating 
3D models, but depending on the geometry and 
material characteristics of the object or scene, one 
technique may be much better suited than another. For 
example, untextured objects are a nightmare for 
traditional stereo, but too much texture may interfere 
with the patterns of structured-light techniques. Hence, 
one would seem to need a battery of systems to deal 
with the variability of objects to be modeled. 
Unfortunately, for quite a few objects, for instance in a 
typical museum, none of the existing techniques will 
work particularly well, or at least a combination 
thereof would be required. 

As a matter of fact, having to model the entire 
collection of diverse museums is a useful application 
area to think about, as it poses many of the challenges, 
often several at once. In our own work, the modeling 
of cultural heritage has been one major driving force. 
Even in this demanding context, claims have been 

made that 3D scanning is a solved problem, but we 
would definitely consider such claims premature. 
Another area is 3D city modeling, which has quickly 
grown in importance over the last years. Such models 
can help planners, but also increasingly car drivers 
with navigation. In a way, it is another extreme in 
terms of conditions under which data have to be 
captured, in that streets represent an absolutely non-
secluded environment, at a much bigger scale than 
what one would typically expect in a museum. 

Here is a list of challenges that we see for such 
applications, which we don't claim to be exhaustive: 

 
• Many objects have an intricate shape, the 

scanning of which requires great precision 
combined with great agility of the scanner to 
capture narrow cavities and protrusions, deal with 
self-occlusions, fine carvings, etc. 
• The types of objects and materials that 

potentially have to be handled are very diverse, 
ranging from metal coins to woven textiles; stone 
or wooden sculptures; ceramics; gems in jewellery 
and glass. No single technology can deal with all 
these surface types and for some of these types of 
artifacts there are no satisfactory techniques yet 
developed. 
• The objects to be scanned range from tiny 

ones like a needle to an entire landscape 
containing petroglyphs or cities. Ideally, one 
would handle this range of scales with the same 
techniques and similar protocols. 
• For many applications, data collection may 

have to be undertaken on-site under potentially 
adverse conditions, transporting ruggedised 
equipment to remote sites. 
• Objects are sometimes too fragile or valuable 

to be touched and need to be scanned ‘hands-off’. 
The scanner needs to be moved around the object, 
without it being touched, using portable systems. 



• Masses of data often need to be captured, like 
in our museum collection or city modeling 
examples. Efficient data capture and model 
building is essential if this is to be practical. 
• Those undertaking the digitisation may or may 

not be technically trained. Not all applications are 
to be found in industry, and technically trained 
personnel may very well not be around. This raises 
the need for intelligent devices that ensure high 
quality data through (semi-)automation and strong 
operator guidance. 
• Cultural artifacts often have huge intrinsic 

value. However the straight economic benefits 
often accrue to organisations who are not the 
owners or managers of the assets (e.g. in hotels, 
restaurants, etc. rather than at the excavations or 
sites discovering or safeguarding the heritage). In 
practice the money that can be spent is usually 
very limited within memory institutions and 
solutions for this kind of application areas 
therefore need to be relatively cheap. At least for a 
long time, a similar situation existed for 3D city 
models, where public authorities had high hopes 
for such models, but low budgets.  
• Also, precision is a moving target in many 

applications and as higher precisions are obtained, 
new applications present themselves that push for 
even higher precision. Analysing the 3D surface of 
paintings to study brush strokes is a case in point. 

 
These considerations about the particular 

conditions under which models may need to be 
produced, lead to a number of desirable, technological 
developments for 3D data acquisition. 
   
Combined extraction of shape and surface 
reflectance. Increasingly, 3D scanning technology is 
aimed at also extracting high-quality surface 
reflectance information. Yet, there still is an 
appreciable way to go before high-precision geometry 
can be combined with detailed surface characteristics 
like full-fledged BRD (Bidirectional Reflectance 
Distribution) or BTF (Bidirectional  Texture Function) 
information. 
 
In-hand scanning. The first truly portable scanning 
systems are already around. But the choice is still 
restricted, especially when also surface reflectance 
information is required and when the method ought to 
work with all types of materials, incl. metals. Also, 
transportable here is supposed to mean more than ‘can 
be dragged between places’, i.e. rather the possibility 
to easily move the system around the object, optimally 
by hand. But there also is the interesting alternative to 
take the objects to be scanned in one’s hands, and to 

manipulate them such that all parts get exposed to the 
fixed scanner. This is not always a desirable option 
(e.g. in the case of very valuable or heavy pieces), but 
has the definite advantages of exploiting the human 
agility in presenting the object and in selecting optimal, 
additional views.   
 
On-line scanning. The physical action of scanning and 
the actual processing of the data often still are two 
separate steps. This may create problems in that the 
completeness and quality of the data can only be 
inspected after the scanning session is over. It may 
then be too late or too cumbersome to take corrective 
actions, like taking a few additional scans. It would be 
very desirable if the system would extract the 3D data 
on the fly, and would give immediate visual feedback. 
This should ideally include steps like the integration 
and remeshing of partial scans. This would also be a 
great help in planning where to take the next scan 
during scanning. 
 
Opportunistic scanning. Not a single 3D acquisition 
technique is currently able to produce 3D models of 
even a large majority of exhibits in a typical museum. 
Yet, they often have complementary strengths and 
weaknesses. Untextured surfaces are a nightmare for 
passive techniques, but may be ideal for structured 
light approaches. Ideally, scanners would automatically 
adapt their strategy to the object at hand, based on 
characteristics like spectral reflectance, texture spatial 
frequency, surface smoothness, glossiness, etc. One 
strategy would be to build a single scanner that can 
switch strategy on-the-fly. Such a scanner may consist 
of multiple cameras and projection devices, and by 
today’s technology could still be small and light-
weight.  
 
Multi-modal scanning. Scanning should not only 
combine geometry and visual characteristics. 
Additional features like non-visible wavelengths 
(UV,(N)IR) have to be captured, as well as haptic 
impressions. The latter would then also allow for a full 
replay to the public, where audiences can hold even the 
most precious objects virtually in their hands, and 
explore them with all their senses. 
 
Semantic 3D. Gradually computer vision is getting at 
a point where scene understanding becomes feasible. 
Out of 2D images, objects and scene types can be 
recognized. This will in turn have a drastic effect on 
the way in which `low’-level processes can be carried 
out. If high-level, semantic interpretations can be fed 
back into ‘low’-level processes like motion and depth 
extraction, these can benefit greatly. This strategy ties 
in with the opportunistic scanning idea. Recognising 



what it is that is to be reconstructed in 3D (e.g. a car), 
can help a system to decide how best to go about, 
resulting in increased speed, robustness and accuracy. 
 
Off-the-shelf components. In order to keep 3D 
modeling cheap, one would ideally construct the 3D 
reconstruction systems on the basis of off-the-shelf, 
consumer products. At least as much as possible. This 
does not only reduce the price, but also lets the systems 
surf on a wave of fast-evolving, mass-market products. 
For instance, the resolution of still, digital cameras is 
steadily on the rise, so a system based on such 
camera(s) can be upgraded to higher quality without 
much effort or investment. Moreover, as most users 
will be acquainted with such components, the learning 
curve to use the system is probably not as steep as with 
a totally novel, dedicated technology.  
 

Obviously, once 3D data have been acquired, 
further processing steps are typically needed. These 
entail challenges of their own. Improvements in 
automatic remeshing and decimation are definitely still 
possible. Also solving large 3D puzzles automatically, 
preferably exploiting shape in combination with 
texture information, would be something in high 
demand from several application areas. Level-of-detail 
(LoD) processing is another example. All these can 
also be expected to greatly benefit from a semantic 
understanding of the data. Curvature alone is a weak 
indicator of the importance of a shape feature in LoD 
processing. Knowing one is at the edge of a salient, 
functionally important structure may be a much better 
reason to keep it in at many scales. 

In the following, we present several recent 
approaches from our research groups at ETH Zürich 
and the University of Leuven, by which we try to 
address some of those challenges. Section 2 describes a 
fast acquisition system, with on-line rendering of 
scanned data, which we use as a basis for our planned 
in-hand scanning system. Section 3 discusses early 
implementations of the semantic 3D idea for city 
modeling. Finally, Section 4 describes a system 
requiring the absolute minimum of apparatus at the 
user’s side: a digital still or video camera, a PC, and an 
Internet connection. This gives her free access to tools 
that turn uploaded images into 3D models.  
 
2. Towards on-line, in-hand 3D Scanning 
 

In this section, we describe our ongoing work to 
create a system that combines in-hand scanning with 
on-line 3D shape extraction. The system is based on 

the well-known phase-shift technique (see e.g. [26]). 
Our implementation generates dense 2.5D depth maps 
at 17 Hz. A difficulty with phase-shift is that it cannot 
be directly combined with in-hand scanning, as relative 
motions between the object and the scanner cause 
ripple artifacts to appear in the captured shapes.  

This is a pity, as fast scanning would be especially 
useful with dynamic scenes. Hence, we have proposed 
countermeasures to strongly reduce this effect.  

In order to solve the phase unwrapping problems 
posed by the phase-shift approach, we have combined 
it with stereo. It combines the accuracy of the former 
with discontinuity robustness of the latter. In that 
respect the system has a bit of the aforementioned 
opportunistic scanning flavour.  

As is usual with phase-shift methods, surface 
texture can be extracted together with its shape. High-
speed is achieved by implementing most of the 
algorithms on the GPU.  

Our scanner is described in detail in [25]. Here we 
outline its main features. Fig. 1 shows the components. 
The scanner consists of a modified DLP projector, two 
high-speed monochrome cameras and a color camera. 
By removing the color wheel of the projector, three 
independent monochrome images are projected by the 
red, green and blue color channel. All three cameras 
are synchronized. The monochrome cameras record the 
individual phase images, while the color camera 
integrates over all three phases to capture the texture 
for the model. The setup is similar to that used by 
Zhang and Huang [26], but has an additional fast 
camera for the aforementioned stereo capacity. An 
example scanned with our system is shown in fig. 2.  

 
 

Figure 1. Hardware Setup of the on-line 
scanning system (more information is given in 

the text). 



 
Phase-shift & Stereo. Three phase-shifted sinusoidal 
patterns are projected and the wrapped phase is 
calculated at each pixel from the intensities of the 
recorded images. Masking operations are used to 
remove all uncertain phase values due to saturation, 
signal strength and phase derivative variance. 

The absolute phase (period + wrapped phase) is 
calculated using the stereo cameras. For each period 
hypothesis the correlation between the two 
monochrome cameras can be calculated using SSD. 
The period with highest correlation is used for the 
absolute phase. Period assignment errors are 
minimized by using Loopy Belief Propagation that 
optimizes smoothness of the absolute phase taking into 
account phase and texture borders. The absolute phase 
at each pixel allows to reconstruct the 3D position 
using point-surface triangulation between one 
monochrome camera and the projector. 

 
Motion Estimation & Compensation. The phase-shift 
method assumes a static scene for the three recorded 
images. Using the DLP projector, the total acquisition 
time can be reduced to 14 ms. Despite this high speed, 
motion will still lead to artifacts. Assuming a locally 
planar and uniform region, however, distortion is 
equivalent to using a different phase-shift. This 
difference can be estimated locally and can thus be 
compensated for [25]. As a side effect, an estimate of 
the motion along the surface normal can be calculated 
at each pixel, thus providing an estimate of the 3D 
optical flow. Further work is necessary to see how on-
line registration could benefit from this estimate (also 
see next point). Fig. 3 shows a result without (left) and 
with (right) motion compensation activated. 
 
In-hand Operation. As already described in section 1, 
it is highly desirable to produce 3D scans swiftly, and 
to have an immediate impression of the completeness 
and quality of the model that is being produced. An 
interesting scenario would be to let the user manipulate 

the object in front of a fixed scanning setup, filter out 
the hands from the data, and to show a model which is 
gradually being completed as scanning proceeds. We 
are currently working on these steps. Skin color 
detection can leave out the hands, whereafter we apply 
crude on-line registration as described in [19,10]. This 
yields a model for inspection, which is then improved 
upon in an off-line step. For that step all scans need to 
be registered anew, and jointly this time [11,17], before 
being integrated into a complete final model [4]. 
Surface reflectance properties can then be recovered 
using the final model and the many texture images 
acquired during the entire scanning process.  

 
3. Semantic 3D 
 

Texture-mapped 3D city models are becoming 
increasingly important for a variety of applications. 
Many approaches have therefore been proposed to 
create such models, using 3D measurements from 
aerial imagery (e.g. [8]) and/or from survey vehicles 
equipped with laser scanners and cameras (e.g. 
[2,7,5,22]). Still, bottom-up reconstruction - whether 
from cameras or other sensors - is naturally limited in 
what it can infer about complex shapes like those of 
buildings. Clearly, 3D reconstruction can be helped by 
extra knowledge about the objects, in casu both of the 
architectural features of the buildings themselves and 
of the objects that surround them. 

 
3.1. Cognitive loops to the rescue 
 

The main idea behind the system presented in the 
following is therefore to supply reconstruction with 
such semantic knowledge through the integration with 
and the feedback from visual object detection [3,12]. 
This interaction benefits from recent advances in object 

  
(a)                                (b) 

 
Figure 2. Face reconstruction: a) geometry,  

b) textured geometry. 
 

  
(a) (b) 

 
Figure 3. Face reconstruction a) without and b) 

with motion compensation. Note the ripple 
artifact without compensation. This was due to 

head motion during the scanning. 



recognition [5,13], which have resulted in dramatic 
improvements in recognition  performance, making 
such an integration finally a feasible option. 

Our approach is based on the tight integration of 
two components. On the one hand, we employ a real-
time passive-stereo based 3D City Modeling algorithm 
which is able to build compact 3D representations 
of cities using the assumption that building facades and 
roads can be modeled by simple ruled surfaces [2]. A 
typical result of this method can be seen in fig. 4 (b). 
The main advantage of this algorithm is its exceptional 
speed. It can process the full Structure-from-Motion 
(SfM) and dense reconstruction pipeline at 25-29fps. 
Thus, the reconstructed model can directly be created 
online, while the survey vehicle is driving through the 
streets. 

However, the simplifying assumptions which 
deliver both speed and robustness for the facade 
reconstructions, produce nonsensical results for other 
objects which defy them. As a good case in point, 
 the algorithm is unable to model cars which are 
omnipresent in cities. Their textures get simply 
squashed onto the ruled surfaces used to represent the 
facades and the ground. This results in a serious 

degradation of the visual quality of the 3D city model  
(Fig. 4 (a,b)). 

We therefore combine the 3D reconstruction with 
the object detection algorithm from [5] in order to 
detect cars in the input video streams (Fig. 4 (d)). The 
two components are integrated in a cognitive feedback 
loop. The 3D reconstruction modules inform object 
detection about the scene geometry, which greatly 
helps to improve detection precision. Cars are expected 
to be on the ground plane after all... Using the 
knowledge of camera parameters and scene geometry 
from [2], the 2D car detections are temporally 
integrated in the world coordinate frame, leading to 
precise 3D location and orientation estimates (Fig. 
4(f)). Those can then be used to build up a metric scene 
model (Fig. 4 (e)) and to instantiate virtual 3D car 
models which improve the visual realism of our final 
3D city model (Fig. 4 (c)). 

Our final system is able to create an automatic 3D 
city model from the input video streams of a survey 
vehicle, identify the locations of cars in the recorded 
real-world scene, and replace them by virtual 3D 
models in the reconstruction [3]. 

Besides improving the visual realism of the final 

 
 

Figure 4. 3D city modeling using semantic information: (a) an image from the original survey 
video; (b) a rendered image from the reconstructed 3D model with the same camera position; (c) 

final 3D city model with virtual 3D cars whose positions have been determined by the object 
recognition module. (bottom) Detailed steps of the object recognition pipeline: (d) initial 

detections using ground plane constraints; (e) temporal integration on reconstructed map; (f) 
estimated 3D car locations, rendered back into the original image. They serve to instantiate the 

virtual cars in the final 3D city model. 



3D model by covering up reconstruction artifacts, the 
proposed placeholder models have several additional 
advantages. Since they are instantiated in the same 
locations as their real-world counterparts, they give a 
better impression of the scale of the reconstructed  
model and the width and passability of its streets, 
which is important for future, 3D car navigation 
systems. In addition, this solution also addresses 
privacy issues by removing car textures with legible 
license plates.  

Finally, our 3D city modeling approach results in 
very compact models. The reconstructed city model for 
an entire test sequence (1275 stereo image pairs 
covering 6 streets with a total length  
of approximately 500m), including all facade textures, 
takes up only 712kB. Each placeholder car model 
requires an additional 300-500kB of storage, but it can 
be reused wherever the car is instantiated in the 
reconstruction. 
 
3.2. Procedural modeling 
 

If model size can be sacrificed for visual quality, 
we can also exploit similar ideas to the facades. Indeed, 
the characteristic features of buildings can be captured 
quite effectively through the use of shape grammars 
[14]. They do not only allow to create virtual building 
models faster, but also to guide the construction of 

realistic models of existing models from images of 
facades [15].  

As display capabilities improve and audience 
expectations grow, procedural modeling is becoming 
an increasingly important supplement to traditional 
modeling approaches. On one side, procedural 
modeling allows for an efficient high-level modeling of 
detailed high-quality 3D content at low cost, and on the 
other side, the underlying mechanisms that encode the 
design knowledge can be exploited for image 
understanding in computer vision. In this section, we 
will first describe the specific shape grammar that we 
have constructed and employed for the procedural 
modeling of diverse architectural content (see fig. 5), 
and afterwards, we will present ideas and challenges of 
using such a shape grammar for the automatic 
extraction of semantics out of imagery, and to 
subsequently use it for the creation of visually 
appealing 3D models from monocular facade images. 
 
3D Modeling with Shape Grammars. A landmark in 
the formal theory of architecture was the introduction 
of shape grammars by Stiny [21]. These were shown to 
cover a wide range of architectural styles. However, 
Stiny's original shape grammar was hardly amenable to 
computer implementation. Thus, we have proposed a 
more computer oriented alternative [14], CGA Shape, a 
novel attributed shape grammar. In the following, we 

 

  
 

Figure 5. This figure shows the application of CGA shape, a novel shape grammar for the 
procedural modeling of computer graphics architecture. First, the grammar generates procedural 

variations of the building mass model using volumetric shapes and then proceeds to create 
facade detail consistent with the mass model. Context sensitive rules ensure that entities like 

windows or doors do not intersect with other walls, that doors give out on terraces or the street 
level, that terraces are bounded by railings, etc.  

 

 

 
Figure 6.  First 4 steps of a shape grammar derivation sequence. On the right the result of the 

derivation. 
 



briefly introduce the main concepts, give an example, 
but refer the reader to [14] for a more comprehensive 
description. 
The idea of shape grammars is to manually define rules 
that iteratively evolve a design by creating more and 
more details. For example, the rules first create a crude 
volumetric model of a building, called the mass model, 
then continue to structure the facade and finally add 
details for windows, doors and ornaments (see fig. 6).  

 
CGA Shape. The CGA Shape framework consists of 
(1) the shape definition, (2) the production process, (3) 
the rule notation with shape operations suited for 
architecture, and (4) an element repository:  

 
Shape: A shape consists of a symbol (string), geometry 
(e.g. polygonal mesh), and attributes. The most 
important attributes are the position P, three orthogonal 
vectors X, Y, and Z, describing a local coordinate 
system, and a size vector S. These attributes define an 
oriented bounding box in space called scope. 
See fig. 7. 

 
 

Figure 7.  Shape with scope. 
 

Production process: The production process can start 
with an arbitrary configuration of shapes, called the 
initial shapes, and proceeds as follows: (1) Select an 
active shape with symbol in the set (2) choose a 
production rule which acts on the active shape and 
replaces it by a set of successor shapes, (3) mark the 
initial shape as inactive and add the successor shapes to 
the configuration and continue with step (1). The 
resulting data set is called shape tree.  
 
Rules: The CGA Shape production rules are defined in 
the following form: 
 
predecessor: condition → successor: prob 
 
predecessor is a symbol identifying a shape that is to 
be replaced with successor, and condition is a guard 
(logical expression) that has to evaluate to true in order 

for the rule to be applied. The rule is selected with 
probability prob. Several different types of shape 
operations can be applied to specify the successor 
shape, e.g. transformations to modify the scope, to split 
faces, to repeat structures, etc. Dimensions can be 
specified in absolute or relative terms.  

 
Element repository: The library of 3D models consists 
mainly of basic primitives and elementary architectural 
objects (e.g. ionic capitals) created with traditional 
modeling tools like Autodesk’s Maya. They are 
hierarchically organized in categories and types and 
each element has a unique identifier, shader attributes 
and optional metadata. 
 
Virtual reconstruction example. As an example, we 
describe how the ruined site of Pompeii can be 
reconstructed with CGA Shape. To create such 3D 
model, we have to rely mainly on the footprints and the 
available architectural knowledge about the building 
designs of that epoch.  
Hence, the first task was to study extensively the 
domestic architecture of Pompeii (e.g. [6,17,24]). This 
resulted in specifications like: one or two-storey 
buildings with a height between 5m and 9m existed, 
the lower parts of facades are often painted in a redish 
color, remarkably large doors (4 meter) are prevalent, 
the windows were small and barred, etc.  
The next task was to classify the different building 
appearances. We ended up having three types of 
building designs: (1) shops with large openings, (2) 
two-storeyed hotels with a more elaborate door 
decoration etc, and (3) simple, one-storey domestic 
houses. Based on such archaeological knowledge, real 
building footprints (=initial shapes) and GIS data 
which drives the rule selection (building type), ancient 
Pompeii was reconstructed with 190 manually written 
CGA shape rules. The whole model is a rule-based 
composition of just 36 element objects. A rendering of 
the reconstruction is depicted in fig. 8. 

 
Including probabilities in the rules is interesting 

when one wants to create models from little 
information as in the Pompeii case. If an 
archaeological excavation has brought to light little 
more than the footprints of a building, and otherwise 
one only has information about the style in which the 
building had been erected, then one can quickly 
generate multiple reconstructions, all equally 
consistent with the foundations and the style. Each 
reconstruction applies the same rule set, but rules are 
applied with certain probabilities. So, rather than 
building a model with explicit indications of 
uncertainty, one can draw multiple samples (i.e. 
reconstructed models) from the family of possibilities, 



show these, and in that way convey an impression of 
what is (close to) certain and what is rather speculative.  

 

 
 

Figure 8.  Virtual reconstruction of Pompeii. 
 

Modeling facades. In the context of city modeling, an 
important extra step has to be taken. Starting from 
images, and given a shape grammar for the buildings, 
select a set of rules (and the corresponding parameters) 
and leaf nodes (basic templates, e.g. for window 
types), so that the facade texture (or shape in case a 3D 
reconstruction is available) can be re-created or 
‘explained’ with these rules.  

In order to create such models, a kind of reverse 
engineering process is needed. This is a challenging 
task, and results so far have been piecemeal. In [1], the 
authors demonstrated, in a simplified scenario, that it is 
possible to apply a Bayesian approach to automatically 
determine the control parameters of a grammar. 

We have recently proposed a system that yields 
such grammatical models from single images of 
facades [15]. This is the kind of information that we 
also obtain from the fast city modeling approach of the 
previous section. Given a single rectified image of a 
building facade as input (rectification is possible from 
vanishing points), we address the problem of 
automatically computing a 3D geometric model that 
(1) looks like a plausible interpretation of the input 
image, (2) has much higher resolution and visual 
quality than the input image, and (3) includes a 
semantic interpretation (with known windows, doors, 
storeys, etc.).  

The proposed approach works as follows. First, 
mutual information is used to extract high-level facade 
structure by detecting repetitions. Afterwards, a 

subdivision scheme determines semantic top-down 
hierarchies via synchronized edge detection. And 
finally, the resulting shape tree can be used to infer a 
shape grammar rule set. Fig. 9 shows an example.  On 
the left a low-quality input image is shown, on the 
right the enhanced version (incl. higher resolution, 
windows lying deeper, etc.). This transition was 
achieved fully automatically. 
 

  
 

Figure 9. Left: input image of low quality. 
Right: enhanced results exploiting semantic 

understanding of the façade structure. 
 
By figuring out the meaning of the parts, their 

relative position with respect to the main plane of the 
facade can be inferred. The relative depth of the 
windows, for instance, will not be perfect in this way, 
but the rendering of deeper windows with added 
specular reflection by the glass, markedly increases the 
realism.  

Current image-based modeling methods for 
architecture are either inaccurate or need a lot of 
manual input. We believe that the addition of semantic 
information to the building modeling process will 
become standard procedure.  

 
4. 3D WebService 
 

One of the issues mentioned in section 1 was cost. 
It was suggested that the use of consumer hardware can 
help in keeping it at bay. Over the last couple of years 
we have been working on a 3D WebService. It allows 
users to produce 3D models at virtually no cost, once 
they have available some standard consumer products, 
which many people have these days.  
 
4.1. Overview 
 

Users of the 3D WebService only need a digital 
photo-camera, a PC, and an Internet connection. The 
user takes images of the object or scene to be 
reconstructed in 3D, uploads the images to a server, 
and gets notified by e-mail when the 3D results are 
ready for download.  



 
Figure 10.  Schematic overview of the client-
server setup. Images (C) are uploaded from 
the upload tool (A) on the user side to the 
server. There  they are processed on a PC 

cluster (D). The results (E) can be downloaded 
via ftp and visualized on the user PC with the 

modelviewer tool (B). 
 
Fig. 10 shows a schematic overview of the client-
server setup of the 3D webservice. The client- (or user-
) part is located at the top. The server side is at the 
bottom. On his PC, the user can run two programs, the 
upload tool and the modelviewer tool, indicated with A 
and B.  In the upload tool, images can be imported that 
were taken with a digital camera.  Once authenticated, 
the user can transfer these images (C) over the Internet 
to the server at ESAT (EE dept. at K.U.Leuven). There 
a fully automatic parallel process is launched which 
computes dense 3D information from the uploaded 
images. The parallel processes are run on two clusters 
of Linux computers (D), the first of which is a small 
local cluster of PC's while the second is the large 
workstation cluster of K.U.Leuven (800+ processors).  
When the server has finished processing, the user is 
notified by email and the results can be downloaded 
from the ARCserver by FTP (The name ARC stands 
for Automatic Reconstruction Conduit).  These results 
consist of dense depth maps for every image and the 
corresponding camera parameters (E). 

The modelviewer tool allows the user to inspect the 
results. Every reconstructed depth map in the image set 
can be shown in 3D, unwanted areas can be masked 
out and the meshes can be saved in a variety of 
formats. This modelviewer tool only provides a limited 
functionality. Alternatively, the MeshLab software of 
the Visual Computing Lab at CNR-ISTI (Pisa, Italy) 
can be used for the visualization. This freely available 
tool was recently extended with a plug-in that reads the 
results of the 3D webservice. It allows to import the 
results into a 3D viewer, clean them up, perform some 
filtering operations and merge the different depth maps 
into one model. 

 
Automatic Reconstruction Pipeline. The 3D 
webservice is meant to create 3D reconstructions from 
a wide variety of images. Because no user interaction 
is possible once the images have been uploaded, an 
important prerequisite is the need for robustness and 
autonomy on the server part.  A more detailed 
description of the processing pipeline is given in [23]. 
Next, we give a short summary.  
 
Pipeline Overview. The processing pipeline consists 
of roughly four steps: 
 
1. A step that computes a set of image pairs that can 
be used for matching, including Subsampling and 
Global Image Comparison modules.  In this step, the 
images are first subsampled (hence the hierarchical 
nature of the pipeline). Since images can be uploaded 
in non-sequential order, we have to figure out which 
images can be matched. This is the task of the Global 
Image Comparison algorithm which yields a set of 
image  pairs that are candidates for pair wise matching. 

 
2. A step that performs the Pairwise and Projective 
Triplet Matching and the Self Calibration.  In this step, 
feature points are extracted in the subsampled images. 
All possible matching candidates of step 1 are now 
tried. Based on the resulting pairwise matches, all 
image triplets are selected that stand a chance for 
projective triplet reconstruction. This process is 
performed and the results are fed to the self-calibration 
routine which finds the intrinsic parameters of the 
camera. 
 
3. A step that computes the Euclidean reconstruction 
and upscales the result to full resolution.  In this step 
all image triplets and matches are combined into one 
3D Euclidean reconstruction. 
 
4. A step that is responsible for the dense matching, 
yielding dense, i.e. pixel-wise, depth maps for every 
image. 



 
Opportunistic Pipeline. Classic uncalibrated Structure 
from Motion (a.k.a. Structure And Motion) pipelines 
make use of the fact that the set of input images is 
taken in a sequential manner. This helps the 
reconstruction process tremendously because only 
consecutive pairs of images must be matched for 3D 
reconstruction.  Moreover, when the input consists of 
video, subsequent frames are very similar and 
matching is therefore relatively easy. Unfortunately, 
the 3D Webservice described in this paper can not rely 
on this assumption. Users can upload images in non-
sequential order or even use images that were taken in 
a random fashion. The system has to actively look for 
opportunities to turn 2D data into 3D models. This has 
an impact on the matching step, the reconstruction step 
and the dense matching step. 

Another frequently encountered problem is that of 
recorded scenes with parts that are dominantly planar. 
Traditional SaM systems run into trouble here because 
planar scenes give rise to ambiguities in the projective 
reconstruction step. In our pipeline we detect the image 
triplets in which only a planar part of the scene is 
visible. These triplets are discarded for the self 
calibration. Once the internal parameters are computed, 
the discarded triplets are picked up again because now 
all computations can be done in metric space and 
planar scenes no longer pose problems. 
 
Hierarchical Pipeline. In general the quality and 
accuracy of the resulting depth maps is proportional to 
the size of the input images. However, computing 
feature points and matches on large-scale images is 
very time consuming and not so stable a process. That 
is why all incoming images are first subsampled a 
number of times until they reach a typical size in the 
order of 1000x1000. Most of the Structure And Motion 
processing is performed on these subsampled images. 
It is only in the final upscaling step that the result is 
upgraded from the low resolution to the high input 
resolution.  
 
Parallel Pipeline. Several operations in the 
reconstruction pipeline have to be performed many 
times and independently of each other. Image 
comparison, feature extraction, pairwise or triplet 
matching, dense matching, etc. are all examples of 
such operations. The pipeline is implemented as a 
Python script which is automatically triggered by the 
SQL database when a new job arrives. The script has to 
go through several steps and every step can only be 
started when the previous one has finished. Inside one 
step, however, the processing is parallelized. This 
makes the processing suited for execution on the 
K.U.Leuven cluster of workstations. In the current 

implementation, every job that arrives on the ESAT 
server is sent to the K.U.Leuven cluster first. If no 
resources are available there, the job automatically 
returns to ESAT where it is run on our local machines.   
 
4.2. Example results 
 

The 3D web-based reconstruction service has been 
running for more than a year now. Several image sets 
have been uploaded to the service by various users in 
the cultural heritage field.  

Fig. 11 shows input images of the Arc de Triomphe 
in Paris. For this showcase a relatively high number of 
images were taken, also simplified by the fact that one 
can walk around it. An overview of the different 
cameras positions is given in fig. 12. As can be seen, 
more than 100 images were combined in this case. It 
has to be emphasized that the service can yield good 
results with far fewer images though. The resulting 
model is shown in fig. 13. In order to illustrate the 
level of detail obtained, fig. 14 shows a part of the 
reconstruction.  
   
The WebService is accessible at http://www.arc3d.be 
 
4.3. Conclusions and future work 
 
There are still many problems to be solved in the area 
of 3D data acquisition. We have highlighted some, but 
there will undoubtedly be several more. This said, the 
community is making steady progress, and in the paper 
we described some of our own contributions. Due to 
space limitations, we had to make a selection. In [10] 
we have shown how structured light patterns can be 
adapted on the fly to the objects to be captured (the 
opportunistic scanning theme). In [16] we proposed a 
scheme to capture detailed BTF information for rough 
surfaces (joint capture of 3D shapes and surface 
characteristics). Etc. 



  
 

  
 

Fig. 11 A subset of the input images for 
modeling the Arc de Triomphe 

 
 

 
 
Figure 12. Overview of camera positions from 

where input images were taken. 
 
 

 
 

Fig. 13: resulting model of the Arc. 
 

  
 
Figure 14. oblique views showing the level of 

3D detail in one of the sculptured 
ornamentations of the Arc.  
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